BackForwardInstrument:  GHMS 

Instrument details
Acronym GHMS
Full name Geostationary HiMawari Sounder
Purpose To provide information about the vertical distribution of atmospheric moisture, winds, and temperature to feed into forecast models.
Short description Interferometer measuring in the thermal IR (680 - 1095 cm-1) and one mid IR band (1689 - 2250 cm-1). Both bands measured at high spectral resolution around 0.75 cm-1 or better with spectral sampling 0.625cm-1. More details to be added when available.
Background First IR hyperspectral sounder covering East Asia and Western Pacific. Based on the Geo-XO sounder (GXS)
Scanning Technique
Resolution Less than 4.2km at ssp.
Coverage / Cycle Sounding disk (LZA<60 deg) every hour. Japan every 15 mins. Target area (1000x1000 km) every 15 mins.
Mass Power Data Rate

 

Providing Agency JMA
Instrument Maturity Flown on operational programme
Utilization Period: 2028 to 2044
Last update: 2023-05-05
Detailed characteristics
Satellites this instrument is flying on

Note: a red tag indicates satellites no longer operational, a green tag indicates operational satellites, a blue tag indicates future satellites

Instrument classification
  • Earth observation instrument
  • Passive optical radiometer or spectrometer
  • Cross-nadir infrared sounder, possibly including VIS channels
WIGOS Subcomponents
  • Subcomponent 1
  • IR hyperspectral sounders [in GEO]
  • IR hyperspectral sounder [in GEO]
Mission objectives
Primary mission objectives
  • Atmospheric temperature
  • Integrated Water Vapour (IWV)
  • Specific humidity
Evaluation of Measurements

The following list indicates which measurements can typically be retrieved from this category of instrument. To see a full Gap Analysis by Variable, click on the respective variable.

Note: table can be sorted by clicking on the column headers
Note: * Primary mission objective.
VariableRelevance for measuring this variableOperational limitationsExplanation
Atmospheric temperature*1 - primaryCloud sensitive.MWIR and TIR spectrometry in the CO2 4.3 and 15 micrometer bands. Frequent sampling (GEO) enables monitoring instability onset
C2H23 - highCloud sensitive.. Coarse vertical resolution.TIR spectrometry. C2H2 lines around 7.5 and 13.7 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
C2H63 - highCloud sensitive.. Coarse vertical resolution.TIR spectrometry. C2H6 lines around 12 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
CFC-113 - highCloud sensitive.. Coarse vertical resolution.TIR spectrometry. CFC-11 lines around 9.2 and 11.7 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
CFC-123 - highCloud sensitive.. Coarse vertical resolution.TIR spectrometry. CFC-12 lines around 8.8 and 10.8 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
CH4 mole fraction2 - very highCloud sensitive.. Coarse vertical resolution.MWIR and TIR spectrometry. CH4 lines around 4.3 and 7.7 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
ClONO22 - very highCloud sensitive.. Coarse vertical resolution.MWIR and TIR spectrometry. ClONO2 lines around 5.7, 7.7 and 12.5 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
Cloud cover3 - highDiscontinuous coverage.MWIR and TIR spectrometry
Cloud top height2 - very highDiscontinuous coverage.MWIR and TIR spectrometry in window and water vapour band (for emissivity) to estimate cloud top height from its temperature
Cloud top temperature1 - primaryDiscontinuous coverage.TIR spectrometry in window and water vapour band (for emissivity)
Cloud type4 - fairDiscontinuous coverage.MWIR and TIR spectrometry
CO3 - highCloud sensitive.. Coarse vertical resolution.MWIR spectrometry. CO lines around 4.6. Frequent sampling (GEO) enables monitoring diurnal variations
CO2 mole fraction3 - highCloud sensitive.. Coarse vertical resolution.TIR spectrometry. CO2 lines around 15 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
COS3 - highCloud sensitive.. Coarse vertical resolution.TIR spectrometry. COS lines around 11.6 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
Downward long-wave irradiance at Earth surface1 - primaryCloud sensitive.. Highly indirect.MWIR and TIR spectrometry including water vapour and CO2 bands
H2O2 - very highCloud sensitive.. Coarse vertical resolution.MWIR/TIR spectrometry in a range centred on 6.3 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
Height of the top of PBL4 - fairCloud sensitive.MWIR and TIR spectrometry. Height of PBL top from temperature profile. Frequent sampling (GEO) enables monitoring the PBL evolution
Height of the tropopause4 - fairCloud sensitive.TIR spectrometry. Height of tropopause from temperature profile. Frequent sampling (GEO) enables monitoring the tropopause evolution
HNO33 - highCloud sensitive.. Coarse vertical resolution.MWIR and TIR spectrometry. HNO3 lines around 5.9, 7.6 and 11.3 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
Land surface temperature2 - very highCloud sensitive.. Coarse spatial resolution.MWIR and TIR spectrometry (inclusive of several narrow-bandwidth windows and absorption bands for atmospheric corrections)
Long-wave Earth surface emissivity1 - primaryCloud sensitive.. Long time series needed.MWIR and TIR spectrometry measuring land temperature in many windows. Emissivity inferred by statistical analysis
N2O mole fraction2 - very highCloud sensitive.. Coarse vertical resolution.MWIR and TIR spectrometry. N2O lines around 4.5 and 7.7 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
N2O53 - highCloud sensitive.. Coarse vertical resolution.MWIR and TIR spectrometry. N2O5 lines around 5.8 and 8 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
NO3 - highCloud sensitive.. Coarse vertical resolution.MWIR spectrometry. NO lines around 5.3 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
NO23 - highCloud sensitive.. Coarse vertical resolution.TIR spectrometry. NO2 lines around 6.1 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
NO2 Total Column4 - fairCloud sensitive.TIR spectrometry. NO2 lines around 6.1 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
O33 - highCloud sensitive.. Coarse vertical resolution.TIR spectrometry. Ozone band around 9.7 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
O3 Total Column3 - highCloud sensitive.TIR channel(s). Ozone lines in band around 9.7 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
PAN3 - highCloud sensitive.. Coarse spatial resolution.MWIR and TIR spectrometry. PAN lines around 5.7, 8.6 and 12.5 micrometers. Frequent sampling (GEO) enables monitoring diurnal variations
PSC occurrence2 - very highMarginal view from GEO.. Coarse vertical resolution.MWIR and TIR spectroscopy
Sea surface temperature1 - primaryCloud sensitive.MWIR and TIR spectrometry (inclusive of several narrow-bandwidth windows and absorption bands for atmospheric corrections)
SF63 - highCloud sensitive.. Coarse vertical resolution.TIR spectrometry. SF6 lines around 10.5 micrometers. Frequent sampling (GEO) for diurnal variations
SO22 - very highCloud sensitive.. Coarse vertical resolution.TIR spectrometry. SO2 lines around 7.3 and 8.6 micrometers. Frequent sampling (GEO) for sources monitoring
SO2 Total Column2 - very highCloud sensitive.TIR spectrometry. SO2 lines around 7.3 and 8.6 micrometers. Frequent sampling (GEO) for sources monitoring
Specific humidity*1 - primaryCloud sensitive.TIR spectrometry in the water vapour band around 6.3 micrometers. Frequent sampling (GEO) enables monitoring instability onset
Integrated Water Vapour (IWV)*2 - very highCloud sensitive.TIR spectrometry in the bands around 6.3 and above 11 micrometers. Frequent sampling (GEO) enables monitoring instability onset
Temperature of the tropopause3 - highCloud sensitive.TIR spectrometry. Tropopause temperature from temperature profile. Frequent sampling (GEO) enables monitoring the tropopause evolution
Upward spectral radiance at TOA2 - very highMissing all Short-waves.MWIR and TIR spectrometry resolving water vapour lines in the bands around 6.3 micrometers and 11 to 15 micrometers; and other greenhouse gases
Upward long-wave irradiance at TOA3 - highSpectral interpolation needed.MWIR and TIR spectrometry in the windows regions around 3.7 and 11 micrometers, and in water vapour and CO2 bands around 4,3, 6.3 and 15 micrometers
Upward long-wave irradiance at Earth surface1 - primaryCloud sensitive.. Highly indirect.MWIR and TIR channels in windows around 3.7 and 11 micrometers, and in water vapour and CO2 bands around 4,3, 6.3 and 15 micrometers
Wind (horizontal)2 - very highCloud sensitive.. Water vapour tracers needed.TIR spectrometry in the 6.3 micrometers band. Wind profile in clear air by tracking water vapour patches in the humidity profile